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Abstract 

The overall cancer incidence rate declines at old ages. Possible causes of this decline 
include the effects of cross-sectional data that transform cohort dynamics into age 
patterns, population heterogeneity that selects individuals susceptible to cancer, a 
decline in some carcinogenic exposures in older individuals, underdiagnostics, and the 
effects of individual aging that slow down major physiological processes in an 
organism. We discuss several mathematical models contributing to the explanation of 
this phenomenon. We extend the Strehler and Mildvan model of aging and mortality 
and apply it to the analysis of data on cancer incidence at old ages (data source: 
International Agency for Research on Cancer). The model explains the observed time 
trends and age patterns of cancer incidence rates.  
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1. Introduction 

The search for explanations of cancer rate patterns has a long history. Since many years, 
cancer noticeably has been more prevalent among the older than the younger 
population. Most researchers studying the relationship between age and cancer 
mortality risk focused mainly on the increase in cancer mortality rates with age (see 
e.g., Peto et al. 1975, Rainsford et al. 1985, Volpe and Dix 1986, Dix 1989, Krtolica 
and Campisi 2002). They ignored other typical features of cancer rate patterns, such as 
deceleration and decline at old ages. A reason might be that they have used data on age-
specific cancer mortality rather than incidence data. Data on cancer mortality are 
traditionally limited to age 75, which does not allow for observations on the decline in 
the rate at oldest ages (see e.g., EUCAN and GLOBOCAN databases). Data from 
studies on age-specific cancer mortality among the oldest old, when combined with 
available data for earlier ages (Health US 1997, Smith 1996, 1999), allow us to 
conclude that cancer mortality rates among the oldest old decline with age. 

In this paper, we will focus on possible explanations of typical patterns of the 
overall cancer incidence rates. Typical age-pattern features of the overall cancer 
incidence rate include (Fig. 1; source: IARC 1965-1997):  

 
(i) a peak during early childhood, 
(ii) a low rate during youth, 
(iii) an increase during adolescence, 
(iv) deceleration or decline at old ages. 
 
The decline in the cancer incidence rate is also observed in cohort data (Fig. 2).  
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Figure 1: Female (A) and male (B) cancer incidence rates in Japan  
(Miyagi prefecture) 

 

 
 
Source: IARC (1965) – IARC (1997) 
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Figure 2: Female (thin lines) and male (thick lines) “cohort” cancer incidence 
rates in the USA: New York State (A) and San Francisco, Whites (B) 

 
 

 
 
Source: IARC (1965) – (1997) 
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Age-specific incidence rates for different cancer sites have substantially different 
patterns due to different underlying mechanisms. For instance, hormonal instability at 
climacteric ages influences morbidity of diseases directly connected with the endocrine 
and immune balance such as female hormone-dependent cancers (e.g., ovarian or 
endometrium cancers). This results in “wave-like” patterns of incidence rates for these 
sites. Nevertheless, some cancer sites have age-specific trajectories of incidence rates at 
old ages similar to the overall cancer incidence rates at these ages (i.e., a leveling-off or 
decline). This is observed for some of the most prevalent cancers such as lung, stomach 
and colon cancers for both males and females in different countries and time periods 
(Fig. 3).  

Site-specific analyses of cancer rates are very interesting and important. We think, 
however, that this should not exclude studies of the overall cancer incidence rates.  This 
situation resembles the relationship between mortality by cause of death and total 
mortality in demography. Although studies of cause-specific mortality give us much 
more details concerning the mechanisms involved in mortality increase, the studies of 
total mortality are continuing partly because the shape of this curve exhibits remarkable 
regularity despite variability in trends in patterns of cause-specific mortality rates. For 
this reason we decided to focus on the overall cancer incidence rates and address 
questions related to cancers of specific sites in our further studies (more details will be 
discussed in Ukraintseva and Yashin (2004) “Economic progress as cancer risk 
factors”, to appear). 
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Figure 3: Age-specific incidence rates for different cancer sites:  

(A) – Japan, Miyagi prefecture (1962-1964) 

 

(B) – German Democratic Republic (1964-1966) 
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(C) – Japan, Miyagi prefecture (1988-1992) 

 

(D) – Canada (1988-1992) 

 

Source: IARC (1965) – (1997) 
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Concerning the contribution of cancers of several sites into the decline of the 
overall cancer incidence rate, there is a common opinion that the shape of the incidence 
rate pattern is an invariant characteristic of a cancer site. For instance, it was proposed 
(on the base of data from the USA population of the past century) that male lung cancer 
exhibits an exponential increase in the rate until the very old ages regardless of time and 
place differences. This implies that such a shape is an inherent trait of any lung cancer 
pattern. Initially we believed that the specific traits of incidence rate patterns (e.g., 
manifestation of a peak rather than a leveling-off at old ages) mostly depend on a 
cancer site being its inherent feature as well. However, a detailed comparison of 
incidence rate curves showed that their shape depends not only on cancer site and sex 
but also on time, place, and generally on prevalence of the respective cancer (source: 
IARC 1965-1997). For instance, male lung cancer was less prevalent in Japan in the 
past and its age-pattern manifested a wave-like shape with a peak around ages 70-74 in 
the 1960s, while in the 1990s it exhibited a peak shifted to the older ages (Fig. 3). In the 
UK, such a peak is absent nowadays at all but it was exhibited in the past, in the 1930-
1940s. Age-patterns of colon, breast, ovarian and stomach cancers also differ over time 
and place. These differences in the shape of incidence rate patterns for the same cancer 
site probably reflect time and place differences in carcinogenic exposures. The effects, 
being significant, may mask tissue-specific dependence of cancer risk on age. Despite 
such differences, the overall cancer rate patterns exhibit common features. This also 
justifies analyses of cancer incidence rates for all sites combined.  

Detection bias is a well recognized factor that plays an important role in defining 
age-related patterns of cancer incidence rates. The detection of new cases of cancer 
often involves complex diagnostic procedures. The use of a number of such procedures 
(e.g., colonoscopy) may be restricted in the oldest old ages, when individuals are frail, 
or have multiple chronic conditions. This may create the detection bias since a number 
of cancers may stay undetected among the oldest old. For this reason the deceleration or 
decline in the age pattern of cancer incidence rate at oldest old ages, calculated from the 
available data, may not necessarily reflect the real pattern of changes in cancer risk with 
age. Several studies have been performed to address this issue. Stanta et al. (1997) 
analyzed a group of 507 autopsies of elderly subjects, divided into three age groups, 75-
90 years, 95-99, and over 99 (centenarians). The prevalence of cancer was 35% among 
the younger persons, and 20% and 16% respectively, for two other groups of the oldest 
old. Accuracy of diagnosis also declined in the oldest old. The authors concluded that 
both the incidence of cancer and the importance of cancer as a cause of death might 
decline after age 95. Kuramoto et al. (1993) analyzed the prevalence, rate of correct 
clinical diagnosis, and mortality of cancer in 4,894 consecutive autopsies at the Tokyo 
Metropolitan Geriatric Hospital from 1972 to 1990. Cancer prevalence decreased with 
advancing age: 50.0% in the sixties, 47.9% in the seventies, 43.2% in the eighties, and 
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39.3% in the nineties and over. There is also evidence concerning cancer incidence 
turnover at old age in laboratory mice (Pompei et al. 2001). These significant findings 
suggest that old age decline in cancer risk is not spurious. Indeed, for example, in the 
case of experimental animals, such decline can not be related to a diagnostic bias. 

Despite the fact that additional efforts are necessary to evaluate the contribution of 
detection bias into observed estimates of cancer incidence and mortality rates (see 
Ukraintseva and Yashin 2003 for a detailed discussion on the issue of detection bias and 
cancer incidence rates at old ages), many cancer epidemiologists agree on a 
decelerating and even declining age pattern of these rates at oldest old ages. Few 
attempts have been made to explain the above developments in cancer rate curves. 
Some theories attribute the cancer risk patterns to diminished exposure to carcinogens 
(e.g., tobacco smoking) in older individuals (Peto et al. 1985), the effects of population 
heterogeneity (Vaupel and Yashin 1988), and the paradoxical impact of physiological 
aging on cancer risks at old ages (Benson et al. 1996, Ukraintseva and Yashin 2001). 
Below, we discuss different mathematical models that provide specific explanations for 
the cancer incidence rate patterns observed. We apply a modified Strehler and Mildvan 
(1960) model of aging to data on cancer incidence rates in different countries and 
different time periods. We show that the model of carcinogenesis, which operates with 
some parameters of an organism’s aging (with a possible extension to include 
heterogeneity), produces patterns of cancer incidence rates similar to those observed in 
human populations. 

 
 

2. Data 

We apply our model to data on human cancer incidence rates in different countries and 
different time periods. The data are provided by the International Agency for Research 
on Cancer (IARC) in seven volumes (IARC 1965 - 1997). Each volume covers a time 
period of several years (usually three to five) for each country (or province and/or 
ethnic group) under study. The periods vary for different countries. The volumes each 
provide the female and male average annual cancer incidence per 100,000 over the 
corresponding time period for the specific country (province and/or ethnic group) in 5-
year age groups up to 85 and above (for some countries, the first group, 0-4, is 
separated into two groups: 0 and 1-4). The data are provided for separate sites and for 
all sites combined. Not all countries are presented in each volume. The longest time 
series are available for Japan (Miyagi prefecture). Each of the seven volumes contains 
data on the cancer incidence in this region. It therefore is the most appropriate data set 
to analyze changes in cancer incidence rates over time (Fig. 1). Besides the Japanese 
data, we also look at cancer incidence rates in several European countries, Canada, and 
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the USA. Altogether, we use 30 data sets for different countries, ethnic groups, and time 
periods in our analysis. 

 
 

3. Models of human cancer incidence rates 

Several types of models can explain the patterns and dynamics of human cancer 
incidence rates. In this section, we outline some of them and provide different 
explanations for the observed patterns of the rates. The application of these models to 
the available data is beyond the scope of this paper. 

Age-period-cohort models (APC models) are widely used to represent 
epidemiological data. They facilitate trend analysis in disease incidence and mortality 
over age, time, and birth cohort. Some additional efforts are needed to deal with 
identifiability problems (Robertson et al. 1999). However, the main point here is that 
one is able to obtain the observed dynamics of the rates over age (an increase and then a 
leveling-off or decline) and an increase of the rates over time operating with the 
combinations of age, period and cohort effects. 

Another explanation of the decline in cancer incidence rates stems from 
differential selection in a heterogeneous population. Both discrete and continuous 
heterogeneity models provide possible explanations of this decline (see various models 
of cancer incidence and mortality rates in a heterogeneous cohort in Vaupel and Yashin 
1988). The mixture of two populations, one of which is prone to cancer and the other is 
not, results in a decline of the cancer incidence rate in the entire population due to the 
dying off of the susceptible sub-population (Vaupel and Yashin 1985, Vaupel and 
Yashin 1988). A gamma-frailty model (Vaupel et al. 1979), with a Welbull baseline 
incidence shows a declining incidence rate at old ages at the population level. 

Age-period-cohort and heterogeneity models do not describe the internal 
biological processes that result in the observed rate dynamics. Other models that 
incorporate biological mechanisms of carcinogenesis also can explain the actual 
patterns of cancer incidence rates. The Armitage-Doll (AD) model (Armitage and Doll 
1954) uses a multistage theory of carcinogenesis to explain increases of cancer 
incidence rates with age. However, the AD model can not produce the decline in the 
rates. The Moolgavkar-Venzon-Knudson (MVK) model (Moolgavkar and Venzon 
1979, Moolgavkar and Knudson 1981, Moolgavkar and Luebeck 1990) takes into 
account the dynamics of cell proliferation and differentiation in the process of 
carcinogenesis. The model, which has age-dependent intensities of proliferation and 
differentiation of normal and intermediate (pre-malignant) cells, results in age-related 
increases and declines of the rates. Yakovlev et al. (1993) suggested a model of tumor 
development that operates with a set of cells (“clonogens”) capable of generating 
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tumors in the long run. The incidence rates are proportional to the probability 
distribution function of random variables representing the time for the clonogen to 
produce a detectable tumor (progression time). As a result, the incidence rates increase, 
level off, and decline with age. 

Individual aging models refer to age-associated changes in an organism that 
influence the chances of developing a disease. Ukraintseva and Yashin  (2001) 
proposed a model of individual aging that operates with three components (basal, 
ontogenetic, and exposure-related) having different age-related dynamics in an 
organism. The basic idea behind this model is that internal biological processes, which 
exhibit different age-related dynamics, are assumed to have a different influence on the 
age-specific probability of developing a disease. Any observed morbidity pattern in a 
population is the result of interaction between these processes (see details in section 4.2. 
below). The model can be incorporated into the Yakovlev and Tsodikov (1996) model 
of carcinogenesis to produce the observed patterns of human cancer incidence rates. 

The role of individual age-related physiological changes that may change 
susceptibility to cancer with age can be captured by the Strehler and Mildvan (SM) 
model (Strehler and Mildvan 1960). Below, we present a modification of the original 
SM model and apply the modified model to data on human cancer incidence rates in 
different regions and time periods.   

 
 

4. Modifications of the Strehler and Mildvan Model 

The original SM model has been widely applied to human total and cause- specific 
mortality data (see Riggs and Millecchia 1992, Riggs and Hobbs 1998, among others). 
An important feature of this model is the connection between age-related physiological 
declines in an organism and Gompertz mortality curves. The model can also be used to 
describe an increase in cancer incidence rates up to old ages. However, it can not 
produce the leveling off and decline observed in the rates at oldest ages. Some 
modifications of the model thus are necessary to reproduce the entire trajectory of 
cancer incidence rates. We start with the original SM model and then develop its 
modifications.  

 
 

4.1 The original Strehler and Mildvan Model  

Following Strehler and Mildvan (1960), assume that an organism has a certain capacity 
to stay healthy (i.e., to have no tumors) at age x. This capacity or “vitality” is defined as 
a linear function of age:  
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( ) ( )BxVxV −= 10 ,     (1) 

where parameter B characterizes the slope of the vitality curve. V0B in the Strehler and 
Mildvan model can be interpreted as the rate of physiological aging.  

Suppose that the intensity of events associated with external stress (we designate it 

as K(x)) does not depend on age, i.e., K(x)=K. Let Dε  be an average magnitude of 

stress. Under these assumptions, the observed cancer incidence rates are 
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==
−  and there is the relationship between Gompertz 

parameters a and b (“Strehler-Mildvan correlation”):  
 

B

b
Ka −= lnln .      (3) 

The straightforward application of the original Strehler and Mildvan model to 
human cancer incidence data (IARC 1965-1997) produces negative values of “vitality” 
V(x) at oldest ages. To avoid these limitations, we suggest an extension of the SM 
model. Since the model includes a conception of the individual aging rate, we discuss 
available empirical data on the dynamics of internal biological processes in an 
organism. These dynamics can be used to define age patterns in the rate of individual 
aging. 

 
 

4.2 Available empirical data on the rate of individual aging  

To analyze data from experimental biology on the dynamics of the individual aging 
rate, we first define this rate per se. To date, researchers have not reached a consensus 
on the definition and ways of measuring an organism’s aging rate. Several measures 
have been suggested, including the use of so named “bio-markers of aging” (Anstey et 
al. 1996, Dean 1988, McClearn 1997, Nakamura et al. 1998). A bio-marker of aging is 
an index of an organism’s physiological state. The rate of individual aging can be 
measured as an increment (or decrement) in the value of the bio-marker per unit of age. 
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It was shown that age-related changes in that bio-marker can be accelerated, 
decelerated, or be linear, depending on the variable chosen as the bio-marker (Fig. 4, 
see also Nacamura et al. 1998).  

 
 

Figure 4: Three representative trajectories of a bio-marker of aging  
(adapted from Nacamura et al. 1998) 

 
 
Note: We can see that a bio-marker of aging accelerates (ab), decelerates (ef), or assumes linearity (cd) with age in an organism. 

Correspondingly, the rate of aging, defined as the rate of change in the bio-marker, increases (in case of ab), decreases (in 
case of ef), or does not change (in case of cd) with age, depending on a variable chosen as the bio-marker of aging. 

 

Equally, the rate of age-related changes in a bio-marker of aging (i.e., the rate of 
aging per se) may increase, decrease, or not change at all with age (see comment on 
Fig. 4). This means that at the same time, and in the same organism, the rate of aging 
can be characterized by increasing, decreasing, or constant functions, depending on the 
index chosen as the bio-marker of aging. 

Does this mean that all attempts to calculate individual aging rates as a universal 
index are useless? In some sense, yes. First, the rate of individual aging is not an 
obligatory constant during life. It may change in an individual with age (as shown by 
the curves “ab” and “ef” in Fig. 4). Second, the aging phenotype results from age-
related changes in an organism. These changes are often discordant (because the 
dynamics of separate age-related processes may be accelerated, decelerated, linear, or 
even wave-like). The relative contribution of these processes to the age phenotype may 
differ in individuals, creating significant variability in aging manifestations. For 
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instance, some individuals look younger but are more vulnerable to disease than their 
peers, while others look older but are more resistant to acute stress, and as result live 
longer. What can we do, then, to study the rate of aging under such conditions? A 
solution is to subdivide individual aging into processes that show different age-related 
dynamics, and then to study these processes separately. Ukraintseva and Yashin (2001) 
applied this approach to explain patterns of age-specific morbidity in human 
populations. The authors divided all age-associated changes in an organism into three 
categories (basal, ontogenetic, and exposure-related) characterized by the decelerated, 
wave-like, and accelerated change in physiological indices with age, respectively, and 
showed that these have a different  (sometimes even opposite) influence on age-specific 
risks of common diseases, including cancer (see also Ukraintseva and Yashin 2003).  

Here we consider only basal changes in an organism. These are associated with the 
most frequently observed type of age-related dynamics of a bio-marker of aging: a 
decelerated change in the value of the bio-marker with age (as shown by curve “ef” in 
Fig. 4). The basal changes reflect the universal decline in the rates of basic biological 
processes during an organism’s life (such as the metabolism, cell proliferation, and 
information processing rates) (Grove and Kilgman 1983, Cheron and Desmedt 1980, 
Guyton and Hall 1996, Remmen et al. 1995, Dean 1988, Rubin 1997). Concerning 
basal changes, the main difference between an old and young individual is that the 
former lives, thinks, and does everything else slower than the young individual, that is, 
the rate of aging decreases in an organism with age. In consequence, many phenotypic 
effects of aging accumulate in an organism at a slower rate with age. For instance, an 
organism grows and gains weight at a slower rate (Fig. 5a). The parameters of skin 
elasticity also change at a slower rate (Fig. 5b) with age. The deceleration in the 
accumulation of phenotypic aging effects is noticeable even in age appearance: the 
percentage of gray haired individuals in a population increases at a slower rate with age 
(Fig. 5c, see Keogh and Walsh 1965).  
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Fig. 5: Examples of a change in a bio-marker of aging at a slower rate with 
age: (A) - age-related change in the weight of ad libitum fed mice 
(Sohal and Weindruch 1996); (B) - age-related change of tail collagen 
contraction in rats (Strehler 1962); (C) - hair graying among 3872 
Australians (Keogh and Walsh 1965). 

 
 
 

4.3 Revised Strehler and Mildvan Model  

Empirical data from studies of individual aging thus allow us to conclude that the rate 
of aging measured in accordance with the age-related dynamics of key physiological 
processes (such as metabolism and information processing) decreases with age, and 
changes in the respective bio-markers of aging decelerate with age in an individual. As 
to the SM model discussed above, this biological information allows us to make an 
assumption about exponentially (instead of linearly) declined individual “vitality” with 
age. We assume that there is an age-related decline in the individual rate of change in 
this vitality. Hence, the vitality index is  

 



Arbeev et al.: Mathematical models for human cancer incidence rates 

252  http://www.demographic-research.org 

( ) BxeVxV −= 0      (4) 

and the respective “rate of individual aging”, r(x), can be defined  as 
 

( ) ( )
dx

xdV
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BxBeV −     (5) 

Note that in the revised model, “the rate of aging” r(x) = BxBeV −
0  changes as the 

individual progresses in years, while in the original SM model, “the rate of aging”, r(x) 
= V0B, is constant during the individual’s entire life. 

In the original SM model, parameter B characterizes the slope of the vitality curve. 
In the revised model, parameter B can be interpreted as the “logarithmic rate of aging” 
because 
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In the revised model, parameter B characterizes the slope of the logarithmic vitality 
curve, log V(x), and the incidence rate is 
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or, defined through the individual “rate of aging”, r(x),   
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4.4 Applying a revised Strehler and Mildvan Model to cancer data  

Epidemiological data show that changes in cancer incidence rates over time as well as 
differences in the rate among populations are closely associated with factors related to 
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economic progress. In particular, the overall cancer incidence rate is commonly higher 
in the more developed countries. Usual explanations of this association involve 
improved diagnostics and increased exposure to environmental carcinogens (e.g., 
smoking and industrial pollution). Others concentrate on rising individual vulnerability 
to cancer and attribute improved medical and living conditions as well as better 
hygiene, among others factors, to this increase; these factors are seen to favor the 
“relaxation” of differential selection in a population and to increase the survival of frail 
individuals in a population.  

The revised SM model also explains the decrease in the overall cancer incidence 
rate at old ages (usually after 75) that is widely observed in epidemiological (both 
period and cohort) data. There are two different methods to obtain the declining rates.  

First, we can obtain from this model the observed decline at oldest old ages and 
acceleration in the rates over time, assuming age-dependent parameter K (or, 

alternatively, parameter Dε ) and/or age-dependent parameter B. We formulate three 

modifications to the model (7):   
a) Let the intensity of stress events be constant until some age T and after this 

age it starts to decline exponentially (as a manifestation of an older individual 
tending to avoid stresses): 

 

( ) ( )
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TxK TxcK ,

,
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where 10 <<< KC . Let r(x)=B be constant. We will refer to model (7) 

with modification (9) as Model 1 throughout the text. 
b) Assume that the intensity of stress events is constant at all ages but that the 

“logarithmic rate of aging” is changing over age. Assume, for instance, that 
this rate is constant until some age T and then it starts to decline exponentially 
(as a more pronounced manifestation of the basal component of aging, see 
Ukraintseva and Yashin 2001): 
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where 10 <<< BC . We will refer to model (7) with modification (10) as 

Model 2 throughout the text. 
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c) Suppose that the intensity of stress events is modeled in the same way as in a.) 
but that at the same time the “logarithmic rate of aging” starts to increase 
exponentially:  
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where 10 <<< KC  and  10 <<< BC . We will refer to model (7) with 

modification (11)-(12) as Model 3 throughout the text. 

In all variants of the model, the resulting incidence rates decline at old ages.  
Second, the observed dynamics of cancer incidence rates can also be obtained with 

the aging-independent parameters of the revised SM model, using a different approach. 
For this purpose, we include not only an exponentially decreasing rate of aging during 
life r(x) but also a factor of population heterogeneity, assuming variability in parameter 
K. The advantage of such an approach is that it allows us to consider both phenomena, a 
decrease in the individual rate of living with age and differential selection in a 
heterogeneous population within the framework of one model, explaining the decline in 
the overall cancer incidence rate at old ages. 

To describe heterogeneity, suppose that each individual during his or her life has a 
specific value of intensity of stress events, denoted by K, and that this intensity is 

gamma distributed with mean 1 and variance 2σ . Assume that the other parameters of 
the revised SM model are deterministic. Then, the conditional incidence rate of such an 
individual is 

( ) D

BxeV

KeKx εµ
−

−
=

0

| ,      (13) 

and, according to the well-known formula for the gamma-frailty model (Vaupel et al. 
1979), the observed incidence rate in the population is  

( ) ( )
( ) ,

1 0
2
0

xM

x
x

σ
µµ

+
=     (14) 
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where D

BxeV

ex εµ
−

−
=

0

)(0  and ( ) ( )∫=
x

dttxM
0

00 µ . We will refer to this model as Model 4 

throughout the text. 
 
 

5. Results 

Models 1-4 were applied to data on human cancer incidence in different regions and 
time periods. The parameters were estimated using Matlab’s least-square routine. The 
estimations in all models for males and females are presented in Tables 1-8. 
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Table 1: Revised SM model with changing parameter B (Model 1) applied to 
data on female cancer incidence in different countries: estimations of 
parameters K, Dε  and B, norm of differences (column Norm) and 

correlation (column Corr) between modeled and observed incidence 
rates 

Country (Region/Race) Period 510−⋅K  Dε  B Norm  Corr 

Canada (Alberta) 1960-1962 0.058 0.135 0.021 191.969 0.995 

             (Newfoundland) 1960-1962 0.110 0.132 0.016 352.533 0.988 

             (Saskatchewan) 1960-1962 1.000 0.110 0.010 198.469 0.997 

Denmark 1953-1957 1.000 0.103 0.011 128.982 0.999 

England and Wales 1979-1982 0.047 0.112 0.026 43.206 1.000 

 1983-1986 0.057 0.111 0.025 72.608 1.000 

 1988-1990 0.060 0.107 0.027 109.496 0.999 

England and Wales  
(South Metropolitan Region) 

1960-1962 0.025 0.123 0.029 51.960 1.000 

Finland 1959-1961 0.305 0.107 0.015 65.901 1.000 

Japan (Miyagi Prefecture) 1959-1960 0.012 0.074 0.048 102.150 0.997 

 1962-1964 0.030 0.120 0.026 70.197 0.999 

 1968-1971 0.089 0.112 0.018 29.176 1.000 

 1973-1977 0.035 0.102 0.027 165.986 0.996 

 1978-1981 0.363 0.110 0.012 63.448 0.999 

 1983-1987 0.158 0.115 0.016 86.654 0.999 

 1988-1992 0.497 0.110 0.012 97.018 0.999 

Norway 1959-1961 0.103 0.124 0.017 53.642 1.000 

Slovenia 1956-1960 0.028 0.118 0.028 49.262 1.000 

Sweden 1959-1961 0.045 0.123 0.024 60.639 1.000 

USA (Connecticut) 1960-1962 0.164 0.124 0.016 100.404 0.999 

         (San Francisco, White) 1969-1973 0.023 0.085 0.044 94.760 0.999 

         (San Francisco, White) 1973-1977 0.022 0.065 0.052 127.088 0.999 

         (San Francisco, White) 1978-1982 0.036 0.089 0.038 107.922 0.999 

         (San Francisco, White) 1983-1987 0.033 0.070 0.044 105.602 1.000 

         (San Francisco, White) 1988-1992 0.047 0.084 0.036 74.000 1.000 

         (New York State) 1959-1961 0.078 0.123 0.020 65.764 1.000 

         (New York State) 1969-1971 0.051 0.119 0.024 60.194 1.000 

         (New York State) 1973-1977 0.063 0.126 0.023 173.026 0.998 

         (New York State) 1978-1982 0.036 0.095 0.034 46.124 1.000 

         (New York State) 1983-1987 0.062 0.102 0.028 42.899 1.000 

 
source: IARC 1965-1997 
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Table 2: Revised SM model with changing parameter B (Model 1) applied to 
data on male cancer incidence in different countries: estimations of 
parameters K, Dε  and B, norm of differences (column Norm) and 

correlation (column Corr) between modeled and observed incidence 
rates 

Country (Region/Race) Period 510−⋅K  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 0.137 0.077 0.025 85.393 1.000 

             (Newfoundland) 1960-1962 1.000 0.083 0.015 175.655 0.999 

             (Saskatchewan) 1960-1962 0.140 0.069 0.029 116.747 1.000 

Denmark 1953-1957 0.109 0.071 0.028 73.549 1.000 

England and Wales 1979-1982 0.093 0.047 0.038 80.396 1.000 

 1983-1986 0.097 0.044 0.039 90.614 1.000 

 1988-1990 0.409 0.063 0.025 91.954 1.000 

England and Wales  
(South Metropolitan Region) 

1960-1962 0.040 0.042 0.047 95.988 1.000 

Finland 1959-1961 0.046 0.039 0.048 92.821 1.000 

Japan (Miyagi Prefecture) 1959-1960 0.037 0.047 0.044 179.777 0.997 

 1962-1964 0.113 0.074 0.027 125.413 0.999 

 1968-1971 0.063 0.050 0.037 132.290 0.999 

 1973-1977 0.107 0.059 0.031 77.651 1.000 

 1978-1981 0.047 0.043 0.044 139.066 0.999 

 1983-1987 0.070 0.051 0.039 67.173 1.000 

 1988-1992 0.061 0.044 0.043 92.723 1.000 

Norway 1959-1961 0.158 0.061 0.027 85.852 1.000 

Slovenia 1956-1960 0.022 0.020 0.066 100.662 0.999 

Sweden 1959-1961 0.059 0.047 0.039 95.218 1.000 

USA (Connecticut) 1960-1962 0.071 0.048 0.041 122.441 1.000 

         (San Francisco, White) 1969-1973 0.088 0.047 0.039 120.991 1.000 

         (San Francisco, White) 1973-1977 0.105 0.048 0.038 135.613 1.000 

         (San Francisco, White) 1978-1982 0.247 0.065 0.027 85.481 1.000 

         (San Francisco, White) 1983-1987 0.301 0.076 0.024 201.148 1.000 

         (San Francisco, White) 1988-1992 0.150 0.063 0.032 418.375 0.998 

         (New York State) 1959-1961 0.071 0.059 0.036 75.361 1.000 

         (New York State) 1969-1971 0.092 0.054 0.035 75.385 1.000 

         (New York State) 1973-1977 0.361 0.069 0.024 183.061 0.999 

         (New York State) 1978-1982 0.118 0.053 0.035 100.591 1.000 

         (New York State) 1983-1987 0.289 0.066 0.026 72.377 1.000 

 
source: IARC 1965-1997 
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Table 3: Revised SM model with changing parameter K (Model 2) applied to 
data on female cancer incidence in different countries: estimations of 
parameters K, Dε  and B, norm of differences (column Norm) and 

correlation (column Corr) between modeled and observed incidence 
rates 

Country (Region/Race) Period 510−⋅K  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 0.058 0.135 0.021 152.586 0.997 

             (Newfoundland) 1960-1962 0.110 0.132 0.016 352.533 0.988 

             (Saskatchewan) 1960-1962 1.000 0.110 0.010 198.469 0.997 

Denmark 1953-1957 1.000 0.103 0.011 128.982 0.999 

England and Wales 1979-1982 0.047 0.112 0.026 43.206 1.000 

 1983-1986 0.057 0.111 0.025 72.608 1.000 

 1988-1990 0.056 0.106 0.028 109.742 0.999 

England and Wales  
(South Metropolitan Region) 

1960-1962 0.025 0.123 0.029 51.960 1.000 

Finland 1959-1961 0.307 0.107 0.015 65.901 1.000 

Japan (Miyagi Prefecture) 1959-1960 0.012 0.074 0.048 102.150 0.997 

 1962-1964 0.030 0.120 0.026 70.197 0.999 

 1968-1971 0.089 0.112 0.018 29.177 1.000 

 1973-1977 0.035 0.102 0.027 165.986 0.996 

 1978-1981 0.358 0.110 0.013 63.448 0.999 

 1983-1987 0.157 0.115 0.016 86.654 0.999 

 1988-1992 0.496 0.110 0.012 97.018 0.999 

Norway 1959-1961 0.103 0.124 0.017 53.642 1.000 

Slovenia 1956-1960 0.028 0.118 0.028 49.262 1.000 

Sweden 1959-1961 0.045 0.123 0.024 60.639 1.000 

USA (Connecticut) 1960-1962 0.165 0.124 0.016 100.404 0.999 

         (San Francisco, White) 1969-1973 0.023 0.085 0.044 94.760 0.999 

         (San Francisco, White) 1973-1977 0.021 0.062 0.053 127.946 0.999 

         (San Francisco, White) 1978-1982 0.034 0.087 0.039 118.832 0.999 

         (San Francisco, White) 1983-1987 0.030 0.064 0.047 113.724 1.000 

         (San Francisco, White) 1988-1992 0.047 0.084 0.036 74.000 1.000 

         (New York State) 1959-1961 0.078 0.123 0.020 65.764 1.000 

         (New York State) 1969-1971 0.051 0.119 0.024 60.194 1.000 

         (New York State) 1973-1977 0.063 0.126 0.023 173.026 0.998 

         (New York State) 1978-1982 0.036 0.095 0.034 46.124 1.000 

         (New York State) 1983-1987 0.062 0.102 0.028 46.894 1.000 

 
source: IARC 1965-1997 
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Table 4: Revised SM model with changing parameter K (Model 2) applied to 
data on male cancer incidence in different countries: estimations of 
parameters K, Dε  and B, norm of differences (column Norm) and 

correlation (column Corr) between modeled and observed incidence 
rates 

Country (Region/Race) Period 510−⋅K  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 0.125 0.076 0.026 81.041 1.000 

             (Newfoundland) 1960-1962 1.000 0.083 0.015 175.655 0.999 

             (Saskatchewan) 1960-1962 0.621 0.078 0.019 82.233 1.000 

Denmark 1953-1957 0.109 0.071 0.028 73.549 1.000 

England and Wales 1979-1982 0.093 0.047 0.038 80.396 1.000 

 1983-1986 0.097 0.044 0.039 90.614 1.000 

 1988-1990 0.522 0.065 0.023 100.755 1.000 

England and Wales  
(South Metropolitan Region) 

1960-1962 0.040 0.042 0.047 90.716 1.000 

Finland 1959-1961 0.046 0.039 0.048 97.569 1.000 

Japan (Miyagi Prefecture) 1959-1960 0.037 0.047 0.044 185.281 0.997 

 1962-1964 0.103 0.073 0.028 126.693 0.999 

 1968-1971 0.636 0.073 0.019 92.801 1.000 

 1973-1977 0.107 0.059 0.031 77.651 1.000 

 1978-1981 0.047 0.043 0.044 139.066 0.999 

 1983-1987 0.070 0.051 0.039 67.173 1.000 

 1988-1992 0.061 0.044 0.043 92.723 1.000 

Norway 1959-1961 0.138 0.059 0.028 81.403 1.000 

Slovenia 1956-1960 0.022 0.020 0.066 100.662 0.999 

Sweden 1959-1961 0.059 0.047 0.039 95.218 1.000 

USA (Connecticut) 1960-1962 0.071 0.048 0.041 122.441 1.000 

         (San Francisco, White) 1969-1973 0.088 0.047 0.039 120.991 1.000 

         (San Francisco, White) 1973-1977 0.105 0.048 0.038 135.613 1.000 

         (San Francisco, White) 1978-1982 0.251 0.065 0.027 84.515 1.000 

         (San Francisco, White) 1983-1987 0.301 0.076 0.024 201.148 1.000 

         (San Francisco, White) 1988-1992 0.149 0.063 0.032 418.375 0.998 

         (New York State) 1959-1961 0.104 0.067 0.030 74.717 1.000 

         (New York State) 1969-1971 0.092 0.054 0.035 75.385 1.000 

         (New York State) 1973-1977 0.068 0.037 0.046 257.278 0.999 

         (New York State) 1978-1982 0.118 0.053 0.035 100.591 1.000 

         (New York State) 1983-1987 0.289 0.066 0.026 72.377 1.000 

 
source: IARC 1965-1997 
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Table 5: Revised SM model with changing parameters B and K (Model 3) 
applied to data on female cancer incidence in different countries: 
estimations of parameters K, Dε  and B, norm of differences (column 

Norm) and correlation (column Corr) between modeled and observed 
incidence rates 

Country (Region/Race) Period 510−⋅K  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 0.058 0.135 0.021 152.586 0.997 

             (Newfoundland) 1960-1962 0.018 0.082 0.042 167.098 0.997 

             (Saskatchewan) 1960-1962 0.122 0.133 0.016 155.432 0.998 

Denmark 1953-1957 0.117 0.123 0.018 66.652 1.000 

England and Wales 1979-1982 0.034 0.102 0.032 26.622 1.000 

 1983-1986 0.043 0.102 0.029 40.340 1.000 

 1988-1990 0.041 0.092 0.033 57.376 1.000 

England and Wales  
(South Metropolitan Region) 

1960-1962 0.018 0.109 0.035 42.603 1.000 

Finland 1959-1961 0.307 0.107 0.015 65.901 1.000 

Japan (Miyagi Prefecture) 1959-1960 0.012 0.074 0.048 102.150 0.997 

 1962-1964 0.030 0.120 0.026 70.197 0.999 

 1968-1971 0.089 0.112 0.018 29.177 1.000 

 1973-1977 0.035 0.102 0.027 165.986 0.996 

 1978-1981 0.359 0.110 0.013 63.448 0.999 

 1983-1987 0.157 0.115 0.016 86.654 0.999 

 1988-1992 0.492 0.110 0.012 97.018 0.999 

Norway 1959-1961 0.085 0.125 0.018 52.801 1.000 

Slovenia 1956-1960 0.031 0.120 0.027 48.530 1.000 

Sweden 1959-1961 0.045 0.123 0.024 60.639 1.000 

USA (Connecticut) 1960-1962 0.090 0.125 0.020 88.062 1.000 

         (San Francisco, White) 1969-1973 0.023 0.085 0.044 94.760 0.999 

         (San Francisco, White) 1973-1977 0.020 0.055 0.056 121.883 0.999 

         (San Francisco, White) 1978-1982 0.034 0.087 0.039 118.832 0.999 

         (San Francisco, White) 1983-1987 0.038 0.080 0.040 104.415 1.000 

         (San Francisco, White) 1988-1992 0.053 0.089 0.033 70.029 1.000 

         (New York State) 1959-1961 0.043 0.118 0.026 56.034 1.000 

         (New York State) 1969-1971 0.051 0.119 0.024 60.194 1.000 

         (New York State) 1973-1977 0.026 0.089 0.040 49.378 1.000 

         (New York State) 1978-1982 0.033 0.091 0.036 43.516 1.000 

         (New York State) 1983-1987 0.062 0.102 0.028 46.894 1.000 

 
source: IARC 1965-1997 
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Table 6: Revised SM model with changing parameters B and K (Model 3) 
applied to data on male cancer incidence in different countries: 
estimations of parameters K, Dε  and B, norm of differences (column 

Norm) and correlation (column Corr) between modeled and observed 
incidence rates 

Country (Region/Race) Period 510−⋅K  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 0.133 0.077 0.025 73.954 1.000 

             (Newfoundland) 1960-1962 0.042 0.059 0.039 134.202 0.999 

             (Saskatchewan) 1960-1962 0.769 0.079 0.018 74.564 1.000 

Denmark 1953-1957 0.077 0.063 0.032 63.769 1.000 

England and Wales 1979-1982 0.170 0.059 0.030 62.464 1.000 

 1983-1986 0.138 0.052 0.033 86.959 1.000 

 1988-1990 0.525 0.066 0.023 100.755 1.000 

England and Wales  
(South Metropolitan Region) 

1960-1962 0.040 0.042 0.047 90.169 1.000 

Finland 1959-1961 0.046 0.039 0.048 97.569 1.000 

Japan (Miyagi Prefecture) 1959-1960 0.037 0.047 0.044 185.281 0.997 

 1962-1964 0.103 0.073 0.028 126.693 0.999 

 1968-1971 1.000 0.073 0.017 66.644 1.000 

 1973-1977 0.107 0.059 0.031 77.651 1.000 

 1978-1981 1.000 0.079 0.016 87.701 1.000 

 1983-1987 0.110 0.062 0.032 44.426 1.000 

 1988-1992 0.075 0.051 0.039 86.862 1.000 

Norway 1959-1961 0.167 0.062 0.026 77.042 1.000 

Slovenia 1956-1960 0.024 0.024 0.061 98.582 0.999 

Sweden 1959-1961 0.059 0.046 0.039 95.218 1.000 

USA (Connecticut) 1960-1962 0.071 0.048 0.041 122.441 1.000 

         (San Francisco, White) 1969-1973 0.154 0.061 0.031 116.389 1.000 

         (San Francisco, White) 1973-1977 0.323 0.066 0.025 95.222 1.000 

         (San Francisco, White) 1978-1982 0.251 0.065 0.027 84.515 1.000 

         (San Francisco, White) 1983-1987 1.000 0.079 0.018 172.146 1.000 

         (San Francisco, White) 1988-1992 1.000 0.078 0.019 318.194 0.999 

         (New York State) 1959-1961 0.108 0.068 0.030 65.152 1.000 

         (New York State) 1969-1971 0.107 0.057 0.033 73.660 1.000 

         (New York State) 1973-1977 1.000 0.075 0.018 203.271 0.999 

         (New York State) 1978-1982 0.286 0.068 0.025 93.045 1.000 

         (New York State) 1983-1987 0.395 0.068 0.024 69.551 1.000 

 
source: IARC 1965-1997 
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Table 7: Revised SM model with heterogeneity in parameter K (Model 4) 
applied to data on female cancer incidence in different countries: 

estimations of parameters 2σ , Dε  and B, norm of differences 

(column Norm) and correlation (column Corr) between modeled and 
observed incidence rates 

Country (Region/Race) Period 2σ  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 4.871 0.087 0.016 371.808 0.981 

             (Newfoundland) 1960-1962 0.359 0.111 0.010 360.808 0.987 

             (Saskatchewan) 1960-1962 1.769 0.099 0.013 396.752 0.987 

Denmark 1953-1957 0.816 0.098 0.013 259.680 0.996 

England and Wales 1979-1982 1.330 0.100 0.012 80.357 1.000 

 1983-1986 1.121 0.100 0.012 101.505 0.999 

 1988-1990 1.077 0.099 0.013 139.143 0.999 

England and Wales  
(South Metropolitan Region) 

1960-1962 2.332 0.103 0.011 82.781 0.999 

Finland 1959-1961 1.786 0.089 0.014 113.617 0.999 

Japan (Miyagi Prefecture) 1959-1960 9.903 0.072 0.019 264.653 0.981 

 1962-1964 8.503 0.074 0.018 304.107 0.977 

 1968-1971 4.122 0.083 0.014 129.228 0.997 

 1973-1977 3.504 0.084 0.014 154.502 0.996 

 1978-1981 4.799 0.081 0.015 190.424 0.994 

 1983-1987 3.248 0.086 0.014 153.448 0.997 

 1988-1992 2.622 0.092 0.013 166.928 0.997 

Norway 1959-1961 1.051 0.102 0.011 61.494 1.000 

Slovenia 1956-1960 5.252 0.086 0.015 145.189 0.996 

Sweden 1959-1961 4.112 0.087 0.015 194.733 0.995 

USA (Connecticut) 1960-1962 0.494 0.107 0.011 111.439 0.999 

         (San Francisco, White) 1969-1973 2.534 0.098 0.015 137.054 0.999 

         (San Francisco, White) 1973-1977 2.689 0.094 0.016 153.555 0.999 

         (San Francisco, White) 1978-1982 2.191 0.093 0.016 130.010 0.999 

         (San Francisco, White) 1983-1987 2.433 0.084 0.018 97.051 1.000 

         (San Francisco, White) 1988-1992 2.757 0.076 0.019 218.568 0.998 

         (New York State) 1959-1961 1.654 0.098 0.013 117.910 0.999 

         (New York State) 1969-1971 1.988 0.097 0.013 82.540 0.999 

         (New York State) 1973-1977 0.840 0.108 0.011 207.190 0.998 

         (New York State) 1978-1982 1.803 0.095 0.014 68.730 1.000 

         (New York State) 1983-1987 2.654 0.084 0.017 101.588 0.999 

 
source: IARC 1965-1997 
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Table 8: Revised SM model with heterogeneity in parameter K (Model 4) 
applied to data on male cancer incidence in different countries: 

estimations of parameters 2σ , Dε  and B, norm of differences 

(column Norm) and correlation (column Corr) between modeled and 
observed incidence rates 

Country (Region/Race) Period 2σ  Dε  B Norm Corr 

Canada (Alberta) 1960-1962 2.683 0.061 0.021 110.189 1.000 

             (Newfoundland) 1960-1962 1.624 0.066 0.020 337.911 0.996 

             (Saskatchewan) 1960-1962 1.283 0.063 0.021 130.952 1.000 

Denmark 1953-1957 1.641 0.064 0.020 204.059 0.998 

England and Wales 1979-1982 1.401 0.055 0.024 113.275 1.000 

 1983-1986 1.107 0.057 0.023 83.649 1.000 

 1988-1990 0.703 0.062 0.022 149.752 1.000 

England and Wales  
(South Metropolitan Region) 

1960-1962 2.219 0.066 0.020 80.981 1.000 

Finland 1959-1961 2.397 0.058 0.024 80.926 1.000 

Japan (Miyagi Prefecture) 1959-1960 5.552 0.045 0.027 219.281 0.996 

 1962-1964 6.596 0.033 0.033 398.346 0.987 

 1968-1971 4.108 0.040 0.028 273.474 0.996 

 1973-1977 2.912 0.042 0.027 388.519 0.995 

 1978-1981 3.285 0.047 0.026 252.474 0.997 

 1983-1987 2.174 0.053 0.024 194.626 0.999 

 1988-1992 1.948 0.055 0.024 166.106 0.999 

Norway 1959-1961 2.170 0.058 0.021 73.705 1.000 

Slovenia 1956-1960 6.482 0.036 0.031 281.685 0.993 

Sweden 1959-1961 3.324 0.045 0.026 227.656 0.998 

USA (Connecticut) 1960-1962 1.174 0.065 0.021 138.767 1.000 

         (San Francisco, White) 1969-1973 1.673 0.050 0.026 239.428 0.999 

         (San Francisco, White) 1973-1977 1.493 0.050 0.026 184.484 1.000 

         (San Francisco, White) 1978-1982 1.024 0.060 0.023 102.437 1.000 

         (San Francisco, White) 1983-1987 1.082 0.058 0.024 289.353 0.999 

         (San Francisco, White) 1988-1992 1.462 0.046 0.028 492.903 0.998 

         (New York State) 1959-1961 1.541 0.066 0.020 66.905 1.000 

         (New York State) 1969-1971 2.041 0.051 0.025 226.711 0.999 

         (New York State) 1973-1977 0.866 0.067 0.021 277.710 0.999 

         (New York State) 1978-1982 1.187 0.056 0.024 175.271 1.000 

         (New York State) 1983-1987 1.571 0.044 0.028 399.447 0.998 

 
source: IARC 1965-1997 
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The four models provide an adequate fit to the data in different regions and time 
periods. Norms of differences and correlations between modeled and observed 
incidence rates for the same data set in Models 1-3 are comparable (see columns Norm 
and Corr in Tables 1-8). Model 3 has greater flexibility because it has an additional 
parameter and is capable of producing a better fit for some data sets. Model 4 fit least 
according to the norms of differences and correlations between modeled and observed 
incidence rates. Nevertheless, all four models capture the observed patterns of cancer 
incidence rates (except a peak in early childhood): a low rate in youth, an increase in 
this rate during adolescence, and a deceleration or decline at old ages. The models also 
produce non-declining rates when parameter T equals the maximal age of available data 
(85) or parameters cB or cK are zeros.  

Estimations of parameters Dε  and B for the same data set are similar in Models 1-

3 in most cases. This is a predictable result because the models have, in essence, the 
same incidence rate until age T and then differ either in the slope of the “vitality” 
function or the intensity of stress events in age interval [T, 85]. The estimations, 
however, show variability between different data sets, reflecting substantial variability 
between the observed rates in different countries and changes in the rates over time in 
the same country. For instance, the Miyagi prefecture incidence rates at oldest old ages 

almost doubled 1950-1990s (Fig. 1). Parameters Dε , B and K define the patterns of 

incidence rates and, therefore, are also subject to variability over time and place. The 
models are less sensitive to changes in parameter K and, in some cases, this parameter 
varies to a greater extent in Models 1-3 and in different data sets within the same 
model. We restricted the parameter K to be less than 105 in our models. In some cases, 
the estimations of K reach the upper boundary, but the greater values of K would result 
only in a minor improvement of fit. We also assumed T to be greater than 70 (around 
the minimal age of decline in the incidence rates) and the estimations are at boundary in 
some cases. However, a further reduction of the lower boundary gives no substantial 
improvement of fit. 

Model 4 also captures the observed pattern of cancer incidence rates, except for a 

peak in early childhood. Parameters Dε  and B have the same meaning and the same 

effect on the shape of the incidence rate as their counterparts in Models 1-3, and their 
estimations lie within the range of the estimations in Models 1-3. Estimations of 

parameter 2σ  (variance of the heterogeneity variable) lie within the range 0.36 – 9.91. 
This reflects a possible variability in the susceptibility to stress in different populations 
at different times. Larger variances may be related to a more pronounced decline of the 
rate in the mid-1950s (e.g., Miyagi prefecture 1959-1960 and 1962-1964, Slovenia 
1956-1960). 
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The models with a constant “logarithmic rate of aging” B over age (Model 1), a 
decreasing B at oldest ages (Model 2) and an increasing B at oldest ages (Model 3) 
result in declining patterns of cancer incidence rates. This means that the observed 
decline in the rates may be the result of three different dynamics of the “logarithmic 
rates of aging” and intensities of stress events related to cancer. We interpret these 
changes as a more pronounced manifestation of the basal component of aging within 
the context of Ukraintseva and Yashin’s (2001) model. The logarithmic rate of aging 
possibly does not change with age, in contrast to the intensity. We can also assume that 
the intensity is fixed over age, whereas the logarithmic rate of aging declines at oldest 
old ages. As a variation of the first model, we can assume that the declining intensity at 
advanced ages is accompanied by an increasing logarithmic rate of aging. Note that we 

can alternatively impose changes on the average amplitude of stress events Dε  rather 

than intensity K.  
Male and female cancer incidence rates are different. Males have higher incidence 

rates at older ages than the opposite sex. The stable relationship between the estimations 

of parameters B and Dε  for male and female data in Model 4 reflects this observation. 

The resulting estimates of Dε  are higher for females in all data sets, while the estimates 

of B are always higher for males (see Tables 7-8). A trade-off between resource 
allocation strategies in the male and female organisms, i.e., between average amplitudes 
of stress events and the rates of physiological aging, possibly explains this 
phenomenon. The female organism spends a greater part of her resources on 
“protection” against physiological aging. As a result, the values of B are lower and that 

of Dε  are higher. The male organism, on the contrary, “fights” harmful influences and 

therefore reduces the amplitude of stress events that “reach” the organism. Thus, the 

corresponding parameters Dε  are lower than that of females, but the trade-off is the 

higher rate of physiological aging B.  
The observed increase in cancer incidence rates over time can be obtained in 

Models 1-4 if, for instance, one of the parameters Dε  and B is increasing and the 

second is constant or declining. Then, changes in parameters Dε  and B over time can 

also be interpreted in terms of changes in resource allocation strategies over time.  
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6. Conclusion 

The literature on mathematical models of carcinogenesis is vast; see e.g., the works by 
Yakovlev and Tsodikov (1996) and Moolgavkar et al. (1999), a recent review paper by 
van Leeuwen and Zonneveld (2001) and references in these works. In this paper, we 
mentioned several very specific mathematical models only, and they had been 
“selected” to explain observed trends in overall cancer incidence rates. We also 
analyzed data on cancer incidence rates in different regions at different periods, 
applying the revised SM model (both with age-dependent parameters and with 
heterogeneity). These models suggest different reasons for the observed patterns of 
overall cancer incidence rates. The analyses of the models demonstrate that: 

1) The observed decline in overall human cancer incidence rates at old ages can be 
a pronounced manifestation of the basal component of individual aging. This result can 
be obtained by a decline (over age) in the related parameter of the logarithmic rate of 
aging (parameter B in Model 2) or by an age-related decline in intensity of external 
stresses at old ages (parameter K in Model 1).  

2) Effects of population heterogeneity in the susceptibility to external stresses can 
also explain this decline (Model 4).  In this model, differences in values of variance of 
the heterogeneity distribution explain differences in the rates of decline at old ages 
observed in different populations and time periods. 

3) The models are capable of explaining the interesting phenomenon observed in 
the overall cancer incidence rates, namely the intersection of male/female rates. This 
universal pattern may be a result of different resource allocation strategies (“fighting” 
external stresses and “fighting” physiological aging) that are used by the male and 
female organisms. This intriguing pattern needs further explanation, from both a 
biological and a mathematical perspective. Available molecular-biological and 
epidemiological data allow for the development of more sophisticated mathematical 
models of these mechanisms.  

4) The observed increase in cancer incidence rates over time can be interpreted in 
terms of changes in the resource allocation strategies over time (i.e., resource allocation 
between “fighting” external stresses and “fighting” physiological aging). Over-time 

trends in parameters of Models 1-4 (when one of the parameters Dε  or B is increasing 

and the second is constant or declining over time) can reflect this phenomenon.  
The results also stimulate development of more detailed models and accumulation 

of more data on dynamics of physiological indices with age. Further analyses are 
necessary to gain a deeper understanding of the impact of age-related physiological 
changes on morbidity. Available data do not allow evaluating age-related changes in 
internal parameters that lead to increased chances of developing a disease with age. 
Extensive epidemiological and molecular-biological studies are needed to obtain time-
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series data on changes in stress-resistance with age (e.g., cellular sensitivity to oxidative 
stress). This permits associations to be made between the unspecified physiological 
index (“vitality”) and real physiological parameters. Applications of various models 
that incorporate the observed physiological parameters to large time series data on 
human morbidity and mortality can help to obtain deeper insights into the possible 
mechanisms that regulate aging-related changes in the physiological parameters, 
elucidate various factors responsible for the modification of the respective patterns over 
time and target appropriate prophylaxis to reduce physiological decline.  

In this paper, we focused mainly on biological explanations of observed declines 
in the age-trajectories of human cancer incidence rates. This does not mean that other 
explanations should not be taken into account. The dynamics of age-specific cancer 
incidence rates over time reflects the combined influence of various factors (social, 
behavioral, environmental, medical etc.). The possible causes of this decline include: (i) 
the effects of cross-sectional data that transform cohort dynamics into age patterns, (ii) 
population heterogeneity that selects individuals susceptible to cancer, (iii) a decline in 
some carcinogenic exposures in older individuals, (iv) underdiagnostics in older people 
– it leads to a smaller detection number of new cases existing latently, and (v) the 
effects of individual aging that slow down major physiological processes in an 
organism. None of these factors can be neglected. The first four causes have been 
discussed in the literature to some extent. Our present paper provided some new 
insights into possible biological explanations for the observed phenomena. More 
elaborated models are needed to incorporate all of them and reveal the relative impact 
of these factors on observed trends. This would provide the grounds for fruitful 
discussions and stimulate further research directions. Changes in social, behavioral, 
environmental, and medical conditions would induce changes in internal (molecular-
biological) mechanisms that are responsible for cancer development. If a convincing 
rationale is available for representing a disease etiology in a specific mathematical 
model, it should not to be ignored in data analysis.  
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